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Abstract
The effects of spin–phonon interaction on the temperature dependence of the
spin-wave and phonon spectrum in ferromagnetic semiconducting thin films
are studied using a Green’s function formalism beyond the random phase
approximation. It is shown that due to the surface modes and the anharmonic
spin–phonon interaction the spin-wave damping effects in thin ferromagnetic
films are enhanced in comparison to the bulk. The phonon spectrum is
discussed, too. Additional phonon damping and phonon frequency shift arise
when the spin–phonon interaction is properly included.

1. Introduction

Ferromagnetic resonance (FMR) and Brillouin light-scattering (BLS) techniques have been
used to investigate the spin-wave damping in ferromagnetic thin films [1]. The physical
nature of the line width of ferromagnetic resonance absorption or BLS spectra is a long-
standing subject and one of the most interesting problems in condensed matter. In some cases
it is a difficult task to interpret experimental data with current theories involving elementary
excitations and their microscopic interactions. Actually, the study of resonance line broadening
is one of the main procedures for investigating the relaxation mechanisms and the laws
governing the basic types of interactions in ferromagnetic systems. Indeed, FMR has been
extensively used as a powerful tool for investigating the crystallinity and anisotropy properties
of magnetic materials and, in particular, for studying the surface and interface phenomena
associated with thin magnetic structures. The line widths measured in FMR and BLS spectra
provide direct information on the spin-wave damping, or relaxation rate, in magnetic materials.
There is current interest in the use of very thin films of ferromagnetic materials such as Fe as the
basis for high frequency microwave devices. Many of the key properties in such devices depend
on the strength of the damping in these systems. The relaxation (damping) of magnetization
motion is a result of microscopic field fluctuations on spins by means of interaction with
a thermal bath. These fluctuations appear due to either elementary processes, e.g., spin–
spin, spin–electron, spin–phonon, or more complicated microscopic processes, such as slowly
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relaxing impurities, so that the line width is the combined effect of defects (or impurities)
and damping. Each microscopic relaxation mechanism predicts its own temperature and
frequency dependences of FMR and BLS line width. The magnetization damping can also
depend on defect/impurity concentration and the sample size. It has been observed [1–5] that
in general the FMR and BLS line width increases substantially as the film thickness decreases
below certain values. On the other hand, Arias and Mills [6] made theoretical predictions
for the extrinsic contribution to the FMR line width arising from the two-magnon scattering
processes. Two-magnon scattering is a well known relaxation mechanism in bulk samples,
which has also been shown to be present in thin films. Dobin and Victora [7] have shown that
an important mechanism of ferromagnetic damping in thin films is the intrinsic four-magnon
scattering process, which transfers energy from the initially excited uniform precession mode
to k = 0 magnons.

Whereas the dynamical magnetic properties of thin magnetic films have been extensively
theoretically investigated [8, 9], it is not so with ferromagnetic semiconducting thin films.
Gopalan and Cottam [10] have used the s–d interaction model to study the bulk and surface
magnetic excitations of a semi-infinite ferromagnetic semiconductors for low temperatures.
Mills [11] has studied the ferromagnetic resonance relaxation in ultrathin metal films, and
specially the role of the conduction electrons. The temperature dependence of the layer
magnetization and the thickness dependence of the Curie temperature of thin ferromagnetic
semiconducting films in the ferromagnetic phase are investigated within the s–d model and
a Green’s function formalism by Wesselinowa et al [12]. The dynamical properties of thin
ferromagnetic semiconducting films are obtained by Wesselinowa [13]. It is shown that the
frequencies of the films are smaller, whereas the damping effects are larger compared to
the bulk.

During the last two decades an impressive development of experimental techniques
has been achieved to even pin down the fundamental interactions in solids, such as the
electron–electron [14], electron–phonon [15, 16] and electron–magnon interactions [17].
The effect of electron–phonon interaction on the temperature dependence of the electronic
spectrum and damping in thin ferromagnetic semiconducting films is studied theoretically
by Wesselinowa [18]. The phonon spectrum is discussed, too. Additional phonon damping
and phonon frequency shift arise when the electron–phonon interaction is properly included.
Phonon–magnon scattering is considered as a major relaxation mechanism of excitations in a
ferromagnet [19, 20]. McMichel and Kunz [21] have calculated the ferromagnetic resonance
damping rates due to coupling between the magnetization and lattice vibrations through
inhomogeneities. Booth et al [22] have established the important relationship between the
electronic, spin and phonon systems.

The temperature dependence of lifetime broadening of the Gd(0001) surface state is
studied using scanning tunnelling spectroscopy [23]. The coherent surface phonon at a GaAs
surface has been investigated by time-resolved second-harmonic generation [24, 25]. The
frequency of the surface component shows red shifts as the pumping power increases. The
shifts are indicative of a marked electron–phonon interaction or anharmonicity of the surface
phonon modes. The phonon density of states (DOS) in thin films of Fe was measured by
inelastic nuclear resonant scattering of synchrotron radiation [26]. The thin-film DOS exhibits
significant deviations from the DOS of bulk Fe, which the authors attribute to phonon lifetime
broadening in the confined geometry. Generally, the anharmonicity of surface phonon modes
is considered to be greater than that of bulk phonon modes. Baddorf and Plummer [27] have
revealed that the anharmonicity for the motion normal to the surface on a Cu(110) surface is
four to five times greater than that in bulk copper. Theoretical studies of the surface phonon
linewidth of Ag, Cu and Al are presented by Rahman et al [28].
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The purpose of the present paper is to investigate the spin–phonon interaction in
ferromagnetic semiconducting thin films on the basis of the s–d interaction model. For the
calculation we use the method of the retarded Green’s functions and especially the method of
Tserkovnikov [29], which is appropriate for spin problems. In this context it is worthwhile
to mention that this method can be applied for various materials with complex magnetic
interactions—metals, rare-earth metals, magnetic semiconductors, metal–insulator systems,
magnetoelectric systems etc. We can calculate different magnetic, electronic, optical and
transport properties, i.e. different static and dynamic properties (for example damping and
relaxation times). We need a model with a quantum mechanical Hamiltonian which contains
different interactions—spin–spin, s–d(f), spin–phonon, dipole–dipole, spin–orbit etc. The
method can be applied to different dimensional systems, such as bulk materials, thin films,
nanoparticles and chains.

2. The model

Let us first introduce the model. We consider a three-dimensional ferromagnetic
semiconducting system on a simple cubic (sc) lattice composed of N layers in the z-direction.
The layers are numbered by n = 1 . . . N , where the layers n = 1 and N represent the two
surfaces of the system. The bulk is established by the other layers. To take into account specific
surface effects we start with the Hamiltonian of the s–d model including both bulk and surface
properties:

H = HM + HE + HME + HP + HSP. (1)

HM is the Heisenberg Hamiltonian for the ferromagnetically ordered d electrons:

HM = − 1
2

∑

l,δ

Jl,l+δSlSl+δ +
∑

i

Di (Sz
i )

2, (2)

where the first term represents the isotropic exchange interactions and the second the single-
ion anisotropic interactions. The exchange constants J and D are supposed to be positive
and negative, respectively. The single-ion anisotropy parameter is typically smaller by some
orders of magnitude than the Heisenberg exchange interaction, |Di | � Ji j .

The parameter Ji j is an exchange interaction between spins at nearest-neighbour sites i
and j . To take into account the effects originated by the finite thickness of the system, we
introduce two interaction parameters J and Js. In the case of an interaction between spins,
situated at the surface layer, the interaction strength is denoted by Ji j = Js. Otherwise, the
interaction in the bulk material is written as J , which is for simplicity assumed to be the same
for the inter-layer coupling between the surface layer and the bulk as well as the intra-layer
coupling between the different layers in the bulk. A similar notation is used for all parameters
in equations (2)–(7).

HE represents the usual Hamiltonian of the conduction band electrons,

HE =
∑

l,δ,σ

tl,l+δc†
lσ cl+δ,σ , (3)

where tl,l+δ is the hopping integral.
HME couples the two subsystems (2) and (3) by an intra-atomic exchange interaction Il ,

HME = −
∑

l

Il Slsl . (4)

The spin operators sl of the conduction electrons at site l can be expressed as s+
l = c†

l+cl−,
sz

l = (c†
l+cl+ − c†

l−cl−)/2, where c†
lσ and clσ are Fermi creation and annihilation operators at

site l, respectively; σ = ±1 corresponds to spin-up and down states.
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HP contains the lattice vibrations including third- and fourth-order anharmonic phonon–
phonon interactions:

HP = 1

2!

∑

q

(Pq P−q + ω2
q Qq Q−q) +

1

3!

∑

qq1

B(q, q1)Qq Q−q1 Qq1−q

+
1

4!

∑

q,q1,q2

A(q, q1, q2)Qq1 Qq2 Q−q−q2 Q−q1+q, (5)

where Qqλ, Pqλ and ωq are the normal coordinate, momentum and frequency, respectively,
of the lattice mode with a wavevector q. The vibrational normal coordinate Qq and the
momentum Pq can be expressed in terms of phonon creation and annihilation operators:
Qqλ = (2ωqλ)

−1/2(aqλ + a†
−qλ), Pq = i(ωqλ/2)1/2(a†

qλ − a−qλ).
The final term HSP represents interactions between the spin and the phonon systems

including anharmonic terms:

HSP = − 1
2

∑

qp

F(q, p)Qp−q(Sz
q Sz

−p + S−
q S+

p)

− 1
4

∑

qpν

R(q, p,ν)Qν Qp−q−ν (Sz
q Sz

−p + S−
q S+

p) + h.c. (6)

3. The magnon Green’s function

In order to study the magnon excitations of the film we introduce the following retarded Green’s
function:

gi j(t) = 〈〈S+
i (t); S−

j (0)〉〉, (7)

where S+ and S− are the spin- 1
2 operators. On introducing the two-dimensional Fourier

transform gni n j (k‖, ω), one has the following form:

〈〈S+
i ; S−

j 〉〉ω = σ

N ′
∑

k‖

exp(ik‖(ri − r j ))gni n j (k‖, ω), (8)

where N ′ is the number of sites in any of the lattice planes, ri and ni represent the position
vectors of site i and the layer index, respectively, and k‖ = (kx, ky) is a two-dimensional
wavevector parallel to the surface. The summation is taken over the Brillouin zone.

For the approximate calculation of the Green’s function (8) we use a method proposed by
Tserkovnikov [29], which is appropriate for spin problems. As a result the equation of motion
for the Green’s function (8) of the ferromagnetic semiconducting film for T � TC has the
following matrix form:

L(E)g(k‖, E) = R, (9)

where L(E) can be expressed as

L(E) =





E − L1 + i�1 k1 0 0 0 0 . . .

k2 E − L2 + i�2 k2 0 0 0 . . .

0 k3 E − L3 + i�3 k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN E − L N + i�N





with

k = J 〈Sz
n〉, n = 1, . . . , N,

Ln = In〈sz〉n +
I 2
n 〈Sz

n〉〈sz
n〉

ω − In〈Sz
n〉 + 4Jn〈Sz

n〉(1 − γ (q‖)) + Jn−1〈Sz
n−1〉 + Jn+1〈Sz

n+1〉,
γ (k‖) = 1

2 (cos(kxa) + cos(kya)).
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〈Sz
n〉 and 〈sz

n〉 are the localized-spin and conduction electron magnetization, respec-
tively [12, 22]. Calculations yield the following expression for the transverse spin-wave
damping �s

n :

�s
n = �ss

n + �sd
n + �sp

n . (10)

To the transverse spin-wave damping �s
n contribute the dampings �ss

n , �sd
n and �

sp
n , due to the

spin–spin, s–d and spin–phonon interactions, respectively. The terms are given in appendix A.
The spin, electron and phonon correlation functions n̄q‖ = 〈S+

q‖ S−
q‖ 〉, m̄q‖σ = 〈c†

q‖σ cq‖σ 〉
and N̄q‖ = 〈a†

q‖aq‖ 〉 which appear in the damping terms are obtained via the spectral theorem.
E(k‖), ε(k‖) and ω̄(k‖) are the renormalized spin-wave, electronic and phonon energies,
respectively. For the calculation of the conduction band magnetization, the electronic energy
and the electron correlation function it is necessary to define a one-electron Green’s function
by Gσ (k) = 〈〈c†

kσ ckσ 〉〉 [18].
In order to obtain the solutions of the matrix equation (9), we define two-dimensional

column matrices gm with the elements given by (gn)m = gmn and (Rn)m = 2〈Sz
n〉δmn , so that

equation (9) yields

L(E)gn = R. (11)

From equation (11), gnn(E) is obtained as

gnn(E) = |Lnn(E)|
|L(E)| , (12)

where |Lnn(E)| is the determinant made by replacing the nth column of the determinant |L(E)|
by I . The poles En of the Green’s function gnn(E) can be obtained by solving |L(E)| = 0.

4. The phonon Green’s function

In order to obtain the phonon spectrum we have to define the phonon Green’s function:

Gi j(t) = 〈〈ai (t); a†
j (0)〉〉. (13)

Analogous to the previous section, after a two-dimensional Fourier transformation we get for
the matrix Green’s function the following expression:

H(ω)G(k‖, ω) = I, (14)

where

H(ω) =





ω − V1 + iγ1 k1 0 0 0 0 . . .

k2 ω − V2 + iγ2 k2 0 0 0 . . .

0 k3 ω − V3 + iγ3 k3 0 0 . . .
...

...
...

...
...

...
. . .

0 0 0 0 0 kN ω − VN + iγN





with

kn = R(k‖, k‖, k‖)〈Sz〉2
n − B(k‖, k‖, 0)〈Qk‖ 〉δk‖0,

Vn = ωk‖ − 1

N ′
∑

q‖

[
Rn(k‖, q‖, q‖)〈Sz〉2

n + Rn−1(k‖, q‖, q‖)〈Sz〉2
n−1

+ Rn+1(k‖, q‖, q‖)〈Sz〉2
n+1

]
+ Bn(k‖,−k‖, 0)〈Q0〉n

+ Bn−1(k‖,−k‖, 0)〈Q0〉n−1 + Bn+1(k‖,−k‖, 0)〈Q0〉n+1
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+
1

2N ′
[
(An(k‖,−k‖, q‖,−q‖) + An(q‖,−k‖,−q‖, k‖))(2N̄n(q‖) + 1)

+ (An−1(k‖,−k‖, q‖,−q‖) + An−1(q‖,−k‖,−q‖, k‖))(2N̄n−1(q‖) + 1)

+ (An+1(k‖,−k‖, q‖,−q‖) + An+1(q‖,−k‖,−q‖, k‖))(2N̄n+1(q‖) + 1)
]
,

〈Qk‖ 〉 = Fk‖,k‖ 〈Sz〉2 − 1
N ′

∑
q‖ Bk‖,q‖(2N̄q‖ + 1)

ωk‖ − Rk‖,k‖,k‖ 〈Sz〉2 + 1
N ′

∑
q‖ Ak‖,q‖(2N̄q‖ + 1)

.

We obtain the following expression for the phonon damping taking into account the spin–
phonon interaction:

γ ph
n = γ sp

n + γ ph−ph
n . (15)

γ
sp
n is the damping part which comes from the spin–phonon interaction and γ

ph−ph
n is the

phonon damping due to the phonon–phonon anharmonic interaction. The damping terms are
given in appendix B.

We obtain the solutions of the matrix equation (14) analogous to the previous section.

5. Numerical results and discussion

We turn in this paper to the influence of the spin–phonon interaction, temperature and film
thickness on the dynamical behaviour of thin films. Thin films are of particular interest because
their critical properties are more susceptible to surface parameters than thicker films. The
temperature dependence of the renormalized spin-wave energy is calculated numerically for a
simple cubic (sc) thin ferromagnetic semiconducting film with parameters for CdCr2Se4 [30]:
Js = 0.2 J, Ds = D = 0.01 eV, Is = 0.2I , ts = 0.05t , Fs = 2F , Rs = 2R, Bs = 2B , As = 2A,
J = 0.1 eV, I = 0.5 eV, t = 0.1 eV, B = −2.54 cm−1, F = 23 cm−1, R = −18 cm−1,
A = 6.61 cm−1, S = 3/2, W = 0.1 eV, k = 0, TC = 130 K. At a solid surface, the crystal
symmetry is broken, and the anharmonicity is expected to be a factor of two to three greater
than in the bulk [31, 32]. Therefore we have chosen greater surface anharmonic constants
compared to the bulk. It will be shown that the enhanced surface anharmonicity leads to a
decrease in energy and increase in width of a surface phonon.

5.1. The spin-wave spectrum

The spin-wave energy and the damping were determined taking into account spin–phonon
interactions from equation (9), by solving |L(E)| = 0 (12). The temperature dependence of
the spin-wave frequencies is plotted in figure 1 for a simple cubic ferromagnetic semiconducting
film for k‖ = 0 and different thicknesses of the film (N = 8 and 30 layers). It is found that
there are several differences between the thin films and the bulk behaviour and between the
quantities with and without spin–phonon interaction. With decreasing of the film thickness the
frequency decreases, too. Furthermore the spin–phonon interaction decreases the spin-wave
energies. We obtain that for N < 30 layers is valid:

εTF < εB. (16)

The spin-wave energy of the film with N > 30 layers coincides with that for the bulk.
Now we will study the different contributions to the spin-wave damping. Firstly we

consider the zero-temperature limit T = 0. At T = 0 the expression of the spin-wave
damping of the ferromagnetic semiconducting thin film simplifies to



Spin–phonon interaction in ferromagnetic semiconducting thin films 6693

 0

 20

 40

 60

 80

 100

0  20  40  60  80  100  120  140

S
pi

n 
w

av
e 

en
er

gy
 [c

m
–1

]

T [K]

1 2

Figure 1. Temperature dependence of the spin-wave energy ε for an sc ferromagnetic
semiconducting thin film for Js = 0.2Jb, Is = Ib, Bs = 2Bb, As = 2Ab, Fs = 0.2Fb, Rs = 2Rb,
and different film thicknesses: (1) N = 8, (2) 30 layers; dashed line—with, full line—without
spin–phonon interaction.

�s
n(T = 0) = π

4N ′
∑

q‖q‖q‖

F2
n (k‖, q‖)δ

(
En

q‖ − ωn
q‖−k‖ − En

k‖

)

+
π

N ′
∑

q‖p‖r‖

[
R2

n(q‖, p‖, r‖) + Rn(q‖, p‖, r‖)Rn(p‖ − q‖ − r‖, p‖, q‖)
]

∗ δ(En
k‖+q‖−p‖ + ω̄n

r‖ + ω̄n
p‖−q‖−r‖ + En

k‖). (17)

We can see that at T = 0 and low temperatures the spin waves are damped due to the spin–
phonon interaction. At temperatures close to TC and for T � TC, �ss = 0; i.e. the spin-wave
damping in the high-temperature region is due to the s–d and s–p interaction.

Following the spin–phonon interaction plays an important role for low and high
temperatures. At low temperatures γ sp is very small. With increasing temperature, the
damping γ sp increases, and the contribution of the anharmonic terms increases, too. The
term proportional to the spin–phonon constant F is nearly temperature independent. Hence
the anharmonic terms give the main contribution to the temperature dependence of the spin-
wave damping.

The temperature dependence of the spin-wave damping for a thin ferromagnetic
semiconducting film with N = 7 is presented in figure 2. At low temperatures the damping
is very small, the spin-wave energy is greater than the damping term. Approaching TC, �s

increases strongly. The damping parts, due to the s–d and s–p interactions, predominate over
this, which is due to the spin–spin interaction. Therefore we have

�ss � �sp � �s−d. (18)

The spin-wave damping as a function of temperature is plotted in figure 3 with and without
spin–phonon interaction for various film thicknesses (N = 8 and 30 layers). Thinner films
have larger damping. For N < 30 layers we have

γTF > γB, (19)

i.e. γ is larger for thin films than that for the bulk. This is in agreement with the experimental
data [1–5]. The spin–phonon interaction enhances the damping and contributes to the
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Figure 2. Temperature dependence of the spin-wave damping for F = 23 cm−1, R = −18 cm−1

and ω0 = 100 cm−1: curve 1, total spin-wave damping �s; curve 2, spin-wave damping �sd from
the s–d interaction; curve 3, the spin-wave damping �sp due to the spin–phonon interaction.
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Figure 3. Temperature dependence of the spin-wave damping �s for the same parameters as in
figure 1, and different film thicknesses: (1) N = 8, (2) 30 layers; dashed line—with, full line—
without spin–phonon interaction.

experimentally obtained line broadening. It must be taken into account in order to obtain
correct results.

It is worth-while to mention that in our calculations we have not taken into account the
influence of the surface single-ion anisotropic interaction constant; the exchange constants
from surface and bulk are equal. But this is not always so. It is known that the surface
anisotropies are important for thin films. This will be considered in a next paper. If we take
Ds �= Db then in the transverse spin-wave damping there appears an additional term due to
the surface anisotropy, which increases the damping and contributes to the broadening of the
line widths.
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Figure 4. Temperature dependence of the phonon A mode with ω0 = 100 cm−1 for an sc
ferroelectric film for the same parameters as in figure 1, and different film thicknesses: (1) N = 8,
(2) 30 layers; dashed line—with, full line—without spin–phonon interaction.

5.2. The phonon spectrum

Now we will study the effects of the spin–phonon and phonon–phonon interactions on the
phonon frequency and damping in ferromagnetic semiconducting thin films. The phonon
energy and the damping were calculated numerically using the same parameters as for the
spin-wave spectrum. Some interesting features are observed from the obtained results. The
surface phonon energy ω̄s is much smaller than the phonon energy of the inner layer ω̄N/2;
the surface phonon decreases four times more than observed in the bulk. This is due to the
lower coordination number of the surface phonons and to the spin–phonon interaction. With
increasing of the spin–phonon interaction constant the surface phonon energy decreases. The
surface damping �

ph
s is much larger compared to the damping of the inner layer �

ph
N/2. The big

difference between the surface spectrum and the spectrum of the inner layer can be explained
as the result of surface modes, which are damped quickly on going into the bulk due to the
confined geometry, and due to the spin–phonon interaction.

The optical phonon energy ω̄k is renormalized owing to the anharmonic phonon–phonon
and spin–phonon interactions. If they are not taken into account, then ω̄k is identical with the
energy ωk of the uncoupled optical phonon. It will be independent of temperature. We have
studied the temperature dependence of the renormalized phonon frequencies using the same
model parameters as in figures 1 and 2. The phonon mode displays a non-linear dependence on
temperature when T approaches TC. Since it is a lattice mode this behaviour can be described
to strong anharmonic effects. If we take into account only the third-order interaction terms,
i.e. A = 0, B = 0, then we obtain a linear temperature dependence close to TC. It is evident
that there is a strong anharmonicity affecting the phonon modes near the transition point from
the ferroelectric to the paraelectric phase. The calculations demonstrate that we must not
neglect the effects of the spin ordering, and the Hamiltonian which describes the system must
include terms taking into account not only the anharmonic phonon–phononinteraction but also
the anharmonic spin–phonon interaction. The temperature dependence of the renormalized
phonon mode ω0 = 100 cm−1 (D mode) for CdCr2Se4 is plotted in figure 4 for different
thicknesses of the film (N = 8 and 30 layers) with and without spin–phonon interaction. It
can be seen that the spin–phonon interaction reduces the phonon energy and must be taken
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Figure 5. Temperature dependence of the phonon damping with ω0 = 100 cm−1 for the same
parameters as in figure 4: total phonon damping γ ph; curve 2, phonon damping γ ph−ph including
the anharmonic phonon–phonon interaction; curve 3, phonon damping γ sp due to the spin–phonon
interaction.

into account if we want to obtain correct results and to explain the experimental data. With
increasing film thickness the frequency increases, too. For N < 30 layers we obtain that

ω̄TF < ω̄B, (20)

i.e. the phonon frequency of the thin film shifts to lower energy due to the existence of a surface
mode and due to spin–phonon coupling. The phonon energy of the film with N > 30 layers
coincides with that for the bulk.

Analogous to section 5.1 we want to discuss the phonon damping on temperature,
anharmonicity and film thickness. The temperature dependence of �ph for N = 8 layers
obtained using the same model parameters as in figure 4 is shown in figure 5. Firstly we
consider the zero-temperature limit T = 0. At T = 0, where the part of the phonon damping
due to the phonon–phonon interaction γ ph−ph vanishes, we obtain

γ ph
n (T = 0) = π〈Sz〉4

n

N ′2

∑

q‖p‖
[R2

n(−k‖, p‖, q‖) + R2
n(k‖ − q‖ + p‖, p‖, q‖)]

∗
[
δ
(

En
p‖ − En

q‖+ − ω̄n
k‖+p‖−q‖ + ω̄n

k‖

)

− δ
(

En
p‖ − En

q‖ + ω̄n
q‖−k‖−p‖ + ω̄n

k‖

)]
δq0δp0. (21)

It is seen that at T = 0 the phonon modes of the thin film are damped due to the spin–phonon
interaction. Only the spin–phonon anharmonic terms contribute to γ ph at T = 0.

The expression for the damping at T � TC is γ ph = γ ph−ph, because γ sp = 0, i.e.
only the phonon–phonon anharmonic terms contribute to the phonon damping in the vicinity
of TC and above it. This is because we have decoupled the longitudinal Green function,
i.e. 〈Sz

q Sz
q〉 → 〈Sz

0〉2δq0. If we take into account these correlation functions we would obtain a
finite contribution from the spin–phonon interaction, i.e. γ sp �= 0.

The phonon damping γph = γph−ph +γsp−ph for the phonon mode ω0 = 100 cm−1 (D mode)
for CdCr2Se4 is plotted in figure 6 as a function of temperature for various film thicknesses
(N = 16 and 30 layers). The main signature of the spin–phonon contribution to the lifetime
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Figure 6. Temperature dependence of the phonon damping γph for an sc ferroelectric film for the
same parameters as in figure 1, and different film thicknesses: (1) N = 16, (2) 30 layers; dashed
line—with, full line—without spin–phonon interaction.

broadening is the temperature dependence. The spin–phonon interaction enhances the phonon
damping of the thin film. The damping increases near TC, reaches a maximum, and then
remains nearly constant. It can be seen that there are several differences between the thin films
and the bulk behaviour. Thinner films have larger damping. For N < 30 layers we have

�
ph
TF > �

ph
B , (22)

i.e. the damping is larger for thin films than that for the bulk, which is in agreement with the
experimental data of Rohlsberger et al [26]. The anharmonicity at the surface is four to five
times greater than in the bulk, so it is clear that the anharmonic terms play an important role
in the lifetime broadening and must be taken into account if we want to obtain correct results
for the damping effects at surfaces and in thin films.

6. Conclusions

Beyond the random phase approximation we get the renormalized spin-wave spectrum and
phonon spectrum for an sc ferromagnetic semiconducting thin film. The spin–phonon coupling
plays an important role. It decreases the spin-wave energy of the film. We show for the
first time the importance and the influence of the spin–phonon interaction on the phonon
spectrum of ferromagnetic semiconducting thin films. The phonon modes display a non-linear
temperature dependence due to the influence of the spin ordering on the phonon modes. Only
the anharmonic phonon–phonon interaction could not explain the temperature dependence
below TC. It has been found that the spin–phonon anharmonic terms play an important
role at low temperatures, whereas the anharmonic phonon–phonon interaction is important
at temperatures above TC.

We have obtained that the spin-wave and phonon damping in ferromagnetic thin films is
greater compared to the bulk case, due to different mechanisms which contribute additively to
the damping, such as surface effects [12], electron–phonon interactions [18] and spin–phonon
interactions, which are considered in this paper. It must be noted that the interactions of all
three systems—the electrons, phonons and spins—must be considered in order to obtain correct
results and to understand the experimental data in ferromagnetic semiconducting thin films.



6698 J M Wesselinowa

Appendix A

�ss
n is the damping part which arises from the spin–spin interaction:

�ss
n = 2π〈Sz

n〉2

N ′2

∑

q‖p‖
v2

n(k‖, q‖, p‖)
[
n̄n

p‖(1 + n̄n
k‖−q‖ + n̄n

p‖+q‖) − n̄n
k‖−q‖ n̄n

p‖+q‖

]

× δ(En
p‖+q‖ + En

k‖−q‖ − En
p‖ − En

k‖), (23)

where

vn(k‖, q‖, p‖) = (Jq‖ + Jk‖−q‖−p‖ ) − (Jk‖−q‖ + Jp‖+q‖).

�sd
n is the damping which arises from the interaction between the ferromagnetically ordered

and the conduction band electrons:

�sd
n = 2π I 2

n 〈Sz
n〉

N ′3

∑

q‖p‖r‖

[
(n̄n

p‖ − n̄n
p‖+k‖+q‖)m̄q‖+r‖+(1 − m̄r‖−),

+ n̄n
p‖+k‖+q‖(1 + n̄n

p‖)(m̄q‖+r‖+ − m̄r‖−)
]

∗ δ(En
p‖+k‖+q‖ − En

p‖ + εn
q‖+r‖+ − εn

r‖− − En
k‖)

+
π I 2

n

4N ′2

∑

q‖p‖σ

[
m̄p‖+q‖σ (1 − m̄p‖σ ) + n̄n

k‖−q‖ (m̄p‖+q‖σ − m̄p‖σ )
]

∗ δ(En
k‖−q‖ + εn

p‖+q‖σ − εn
p‖σ − En

k‖)

+
π I 2

n 〈Sz
n〉

2N ′

∑

q‖
(m̄q‖k‖+ − m̄q‖−)δ(εn

q‖−k‖+ − εn
q‖− − En

k‖). (24)

�
sp
n is the damping due to the spin–phonon interaction:

�sp
n = 2π〈Sz

n〉2

N ′3

∑

q‖p‖r‖

(
F2

n (k‖, q‖, p‖, r‖)
[
n̄n

r‖(1 + n̄n
q‖+r‖ + n̄n

p‖ ) − n̄n
q‖+r‖ n̄

n
p‖

]

∗
[
(1 + N̄k‖−p‖−q‖ )δ(En

q‖+r‖ − En
r‖ + En

p‖ − ω̄k‖−p‖−q‖ − En
k‖)

+ (N̄k‖−p‖−q‖)δ(En
q‖+r‖ − En

r‖ + En
p‖ + ω̄k‖−p‖−q‖ − En

k‖)
]

+ F2
n (k‖, q‖, p‖, r‖)(1 + n̄n

p‖ )(1 + n̄n
q‖+r‖)n̄

n
r‖

[
δ(En

q‖+r‖ − En
r‖

+ En
p‖ − ω̄k‖−p‖−q‖ − En

k‖) − δ(En
q‖+r‖ − En

r‖ + En
p‖ + ω̄k‖−p‖−q‖ − En

k‖)
])

+
π

4N

∑

q‖
F2

n (k‖, q‖)
[
(1 + N̄n

q‖−k‖ + n̄n
q‖)δ(En

q‖ − ω̄q‖−k‖ − En
k‖)

+ (N̄n
q‖−k‖ − n̄n

q‖)δ(En
q‖ + ω̄q‖−k‖ − En

k‖)
]

+
π

2N ′3

∑

q‖p‖r‖

(
R2

n(q‖, p‖, r‖)
[[

(1 + N̄n
p‖−q‖−r‖)(1 + N̄n

r‖ ) + N̄n
r‖ n̄n

k‖+q‖−p‖

]

∗ δ(En
k‖+q‖−p‖ + ω̄r‖ + ω̄p‖−q‖−r‖ + En

k‖)

+
[

N̄n
r‖ N̄n

q‖+r‖−p‖ − (1 + N̄n
q‖+r‖−p‖ + N̄n

r‖ )n̄
n
k‖+q‖−p‖

]

∗ δ(En
k‖+q‖−p‖ − ω̄r‖ − ω̄p‖−q‖−r‖ + En

k‖)
]
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+ Rn(q‖, p‖, r‖)Rn(p‖ − q‖ − r‖, p‖, q‖)
[
(1 + N̄n

q‖+r‖−p‖ )(1 + n̄n
k‖+q‖−p‖ )

∗ δ(En
k‖+q‖−p‖ + ω̄r‖ + ω̄p‖−q‖−r‖ + En

k‖)

−
[

N̄n
q‖+r‖−p‖ + (1 + N̄n

q‖+r‖−p‖ )n̄
n
k‖+q‖−p‖

]

∗ δ(En
k‖+q‖−p‖ − ω̄r‖ − ω̄p‖−q‖−r‖ + En

k‖)
])

+
π

2N ′3

∑

q‖p‖r‖

(
R2

n(q‖, p‖, r‖)
[
(1 + N̄n

p‖−q‖−r‖)N̄n
r‖

+ (N̄n
p‖−q‖−r‖ − N̄n

r‖ )n̄
n
k‖+q‖−p‖

]

∗
[
δ(En

k‖+q‖−p‖ + ω̄r‖ − ω̄p‖−q‖−r‖ + En
k‖)

+ δ(En
k‖+q‖−p‖ − ω̄r‖ + ω̄p‖−q‖−r‖ + En

k‖)
])

+
4π〈Sz

n〉2

N ′4

∑

q‖p‖r‖ν‖

(
R2

n(k‖, q‖, p‖, r‖, ν‖)
[
n̄n

r‖(1 + n̄n
q‖+r‖ + n̄n

p‖) − n̄n
q‖+r‖ n̄

n
p‖

]

∗
[
(1 + N̄k‖−p‖−q‖−ν‖ + N̄n

ν‖ )δ(En
q‖+r‖ − En

r‖ + En
p‖ + ω̄ν‖ + ω̄k‖−p‖−q‖−ν‖ − En

k‖)

+ (N̄k‖−p‖−q‖−ν‖ + N̄n
ν‖ )δ(En

q‖+r‖ − En
r‖ + En

p‖ − ω̄ν‖ − ω̄k‖−p‖−q‖−ν‖ − En
k‖)

]

+ R2
n(k‖, q‖, p‖, r‖, ν‖)(1 + n̄n

p‖ )(1 + n̄n
q‖+r‖)n̄

n
r‖(N̄k‖−p‖−q‖−ν‖ + N̄n

ν‖ )

∗
[
δ(En

q‖+r‖ − En
r‖ + En

p‖ + ω̄ν‖ − ω̄k‖−p‖−q‖−ν‖ − En
k‖)

− δ(En
q‖+r‖ − En

r‖ + En
p‖ − ω̄ν‖ + ω̄k‖−p‖−q‖−ν‖ − En

k‖)
])

+
4π〈Sz

n〉2

N ′4

∑

q‖p‖r‖ν‖
R2

n(k‖, q‖, p‖, r‖, ν‖)
[
n̄n

r‖(1 + n̄n
q‖+r‖ + n̄n

p‖ ) − n̄n
q‖+r‖ n̄

n
p‖

]

∗ (1 + N̄k‖−p‖−q‖−ν‖ )
[
δ(En

q‖+r‖ − En
r‖ + En

p‖ + ω̄ν‖ + ω̄k‖−p‖−q‖−ν‖ − En
k‖)

− δ(En
q‖+r‖ − En

r‖ + En
p‖ − ω̄ν‖ − ω̄k‖−p‖−q‖−ν‖ − En

k‖)
]
. (25)

Appendix B

γ
sp
n is the damping part which comes from the spin–phonon interaction:

γ sp
n = 4π〈Sz〉2

n

N ′
∑

q‖
F2

n (q‖, q‖ − k‖)(n̄n
q‖ − n̄n

q‖−k‖ )δ
(

En
q‖−k‖ − En

q‖ − ω̄n
k‖

)

+
4π〈Sz〉2

n

N ′2

∑

q‖,p‖

(
R2

n(−k‖, p‖, q‖)(n̄n
q‖ − n̄n

p‖)
[
(1 + N̄n

k‖+p‖−q‖)

∗ δ
(

En
p‖ − En

q‖ − ω̄n
k‖+p‖−q‖ + ω̄n

k‖

)
+ N̄n

q‖−k‖−p‖

∗ δ
(

En
p‖ − En

q‖ + ω̄n
q‖−k‖−p‖ + ω̄n

k‖

)]

+
[

R2
n(−k‖, p‖, q‖) + R2

n(−k‖ − q‖ + p‖, p‖, q‖)
]
n̄n

q‖ (1 + n̄n
p‖ )

∗
[
δ
(

En
p‖ − En

q‖+ − ω̄n
k‖+p‖−q‖ + ω̄n

k‖

)
− δ

(
En

p‖ − En
q‖ + ω̄n

q‖−k‖−p‖ + ω̄n
k‖

)])
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+
π

N ′2

∑

q‖p‖

[
R2

n(−k‖, p‖, q‖) + R2
n(k‖ − q‖ + p‖, p‖, q‖)

]
〈Sz〉4

nδq0δp0

∗
[
δ
(

En
p‖ − En

q‖+ − ω̄n
k‖+p‖−q‖ + ω̄n

k‖

)
− δ

(
En

p‖ − En
q‖ + ω̄n

q‖−k‖−p‖ + ω̄n
k‖

)]
.

(26)

γ
ph−ph
n is the phonon damping due to the phonon–phonon anharmonic interaction:

γ ph−ph
n = 3π

N ′

∑

q‖
[B2

n(q‖,−k‖, k‖ − q‖) + B2
n (q‖, k‖ − q‖,−k‖)]

∗ (N̄n
q‖ − N̄n

k‖−q‖ )[δ(ω̄
n
k‖ − ω̄n

q‖ − ω̄n
k‖−q‖) + δ(ω̄n

k‖ − ω̄n
q‖ + ω̄n

k‖−q‖ )]

+
8π

N ′
∑

q‖

[
A2

n(q‖,−k‖, p‖, k‖ − q‖ − p‖) + A2
n(q‖, p‖,−k‖, k‖ − q‖ − p‖)

]

∗
[

N̄n
p‖

(
1 + N̄n

q‖ + N̄n
p‖+k‖−q‖

)
− N̄n

q‖ N̄n
p‖+k‖−q‖

]

∗ δ
(
ω̄n

k‖ − ω̄n
q‖ + ω̄n

p‖ − ω̄n
k‖+p‖−q‖

)
. (27)
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